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Abstract. The Born approximation, one photon exchange, used for DIS (deep inelastic scattering) is subject
to virtual radiative corrections which are related to the long-range Coulomb forces. They may be sizeable
for heavy nuclei since Zα is not a small parameter. So far, these corrections are known only for two
processes, elastic scattering and bremsstrahlung on the Coulomb field of a point-like target. While the
former amplitude acquires only a phase, in the latter case also the cross-section is modified. Although the
problem of Coulomb corrections for DIS on nuclei is extremely difficult, it should be challenged rather
than “swept under the carpet”. The importance of these radiative corrections is questioned in the present
paper. We show that, in the simplest case of a constant hadronic current, the Coulomb corrections provide
a phase to the Born amplitude, therefore the cross-section remains the same. Inclusion of more realistic
hadronic dynamics changes this conclusion. The example of coherent production of vector mesons off nuclei
reveals large effects. So far a little progress has been made deriving lepton wave functions in the Coulomb
field of an extended target. Employing available results based on the first-order approximation in Zα, we
conclude that the Coulomb corrections are still important for heavy nuclei. We also consider an alternative
approach for extended nuclear targets, the eikonal approximation, which we demonstrate to reproduce the
known exact results for Coulomb corrections. Calculating electroproduction of vector mesons, we again
arrive at a large deviation from the Born approximation. We conclude that one should accept with caution
the experimental results for nuclear effects in DIS based on analyses done in the Born approximation.

PACS. 25.30.-c Lepton-induced reactions – 25.30.Rw Electroproduction reactions – 13.40.-f Electromag-
netic processes and properties – 25.30.Bf Elastic electron scattering

1 Introduction

Smallness of the fine structure constant α usually justi-
fies lowest-order perturbative QED calculations. In some
cases, however, the expansion parameter is not small, for
instance, for interactions with heavy nuclei, where Zα ∼ 1.
Therefore, the validity of Born approximation for deep
inelastic scattering (DIS) should be questioned since the
incoming and outgoing leptons propagate in the Coulomb
field of the target, as is illustrated in fig. 1, which can cause
a deviation of the DIS cross-section from the Born form.
This may lead to important modifications of experimen-
tal data for nuclear effects in DIS which rely on analyses
based on the Born approximation.

The simplest example is the elastic lepton scattering
in the Coulomb field of a nucleus. Neglecting the nuclear
structure, i.e. treating the target as a point-like charge,
one can solve this problem exactly. Gordon [1] and Mott [2]
have done it in the framework of nonrelativistic quantum
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mechanics. It turns out that the resulting amplitude is dif-
ferent from the Born approximation only by a phase which
has opposite signs for positive and negative leptons. Thus,
the elastic cross-section has no Coulomb corrections. On
the other hand, in the case of hadronic elastic scattering
the Coulomb effects do modify the cross-section because
of the relative Coulomb phase [3–5].

In the relativistic case the problem of elastic
Coulomb scattering was solved for spinless particles by
Schrödinger [6] and for fermions by Mott [2] and Dar-
win [7]. Although the scattering phases were calculated,
summation of the partial amplitudes, i.e. construction of
the wave function of a relativistic charged particle in the
Coulomb field, is still a challenge.

Nevertheless, for practical applications one can employ
the approximation of high orbital momenta, L2 � (Zα)2,
which helps to solve the problem. Corresponding wave
functions in the Coulomb field were found by Furry [8]
and Maue and Sommerfeld [9].
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Fig. 1. Deep inelastic electron-nucleus scattering. The thin
wavy lines illustrate the long-range Coulomb forces which vi-
olate the DIS kinematics (�q �= �p1 − �p2) and modify the lepton
wave functions.

Bethe and Maximon [10] made use of the same ap-
proximation to solve a more complicated problem of
bremsstrahlung and production of electron-positron pairs
by an electron scattering in the Coulomb field. Their find-
ing is interesting, the long-range Coulomb forces modify
not only the phase, but lead to a suppression of the cross-
section compared to the Born approximation. The effect
is significant, about 10–15% for heavy nuclei. The fact
that the Coulomb forces suppress radiation can be in-
tuitively understood as a manifestation of the Landau-
Pomeranchuk effect. Indeed, the electron trajectory is
bending smoothly over long distances, and the photons
radiated from different parts of the electron path interfere
destructively.

One may expect similar modifications in other reac-
tions, especially those which involve strong interactions,
like DIS, they should be revisited aiming to clarify the
role of long-range Coulomb forces. All analyses of DIS
data are based on the Born approximation for the electro-
magnetic interaction with the target, i.e. the wave func-
tions of the upcoming and outgoing leptons are treated as
plane waves. At the same time, precise measurements [11]
disclose rather fine, few percent nuclear effects, like small
antishadowing at x ∼ 0.1, or variation of nuclear shad-
owing with Q2. It is still questionable how these small
effects are related to the missed distortions generated by
the Coulomb field.

On the other hand, the HERMES experiment [12]
has discovered recently unusually strong nuclear effects
which cannot be understood within conventional ap-
proaches [13]. Since these effects arise only after the ra-
diative corrections are introduced into the analysis, it also
motivated us to have a closer look at the problem of reli-
ability of radiative corrections.

This paper is organized as follows. In sect. 2 we start
with a specific simplified example of DIS with a hadronic
current independent of Q2. In this case the amplitude is
proven to gain only a phase leaving the cross-section un-
modified. This is a new nontrivial result which we utilize
for further applications in this paper.

As a more realistic, but still simple example we choose
the coherent vector meson production off nuclei which is
treated within the vector dominance model (VDM). In
sect. 3.1, we consider the case of a point-like target and

Fig. 2. Deviation of the cross-section from the Born approxi-
mation as a function of Zα for different fixed values of Q2/m2

V .

arrive at a substantially modified cross-section which de-
viates from the Born approximation. The Coulomb cor-
rections increase with Q2 as is shown in fig. 2.

The next step toward a realistic hadronic current is
done in sect. 3.2. It corresponds to the vector meson pro-
duction off an extended nucleus, but with the same lep-
tonic wave functions calculated for a point-like Coulomb
center. Again large corrections to the cross-section are
found, whose value and sign varies with lepton energy and
Q2 as is demonstrated in fig. 3.

Eventually, in sect. 3.3, we replace the exact wave func-
tions of the lepton in the Coulomb field of a point-like
charge by approximate ones calculated for the case of an
extended nuclear target. Unfortunately, the only solution
available in the literature corresponds to the first-order ex-
pansion in Zα. Assuming that it is not a phase, we arrive
at a significant correction up to 13% for heavy nuclei.

In sect. 4 we try a different technique, the eikonal ap-
proximation, which is designed in a way which allows to
perform calculations for nuclei of large size. First of all,
we check whether the eikonal approximation is able to
reproduce the Coulomb corrections previously calculated
exactly. We demonstrate in Appendix B for the case of
e+e− production off nuclei that the exact results for the
Coulomb corrections are fully reproduced by the eikonal
approximation. We calculate the Coulomb corrections for
the process of vector meson production in the eikonal ap-
proximation in the limit of very high energies. Again the
corrections are found to be large and to saturate as func-
tions of Q2 at Q2 > 0.1GeV2, as is shown in fig. 4.

Although our results are too rough to be incorporated
into analyses of data for DIS, we conclude in sect. 5 that
one should accept with a precaution the available exper-
imental results for nuclear effect in DIS. We have found
only one specific case of an oversimplified hadronic current
when the Coulomb corrections have the form of a phase.
In more realistic situations, the hadronic current consists
of a few (or many) terms which acquire different phases
and lead to a modified cross-section. Thus, all available
data for DIS on heavy nuclei based on analyses utilizing
the Born approximation might change if the Coulomb cor-
rections are applied.
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Fig. 3. The same as in fig. 2 but for different incident energies
ε1 = 200, 100, 30, 10 and 5 GeV at fixed y = 0.6 and Q2 = m2

ρ.

Fig. 4. The same as in fig. 2, but calculated in the eikonal
approximation. The curve is calculated at Q2 > 1 GeV2 and is
independent of Q2 within the range of coherence qL ∼< 1/RA.

2 A little theorem

This section is aimed to demonstrate that, for a specific
simple form of the conserved hadronic current, the effects
of long-range Coulomb forces are reduced to a phase fac-
tor, like it happens for elastic scattering. This result then
will be implemented into more complicated situations.

Let us start with a process which leaves the nucleus
intact, for example coherent electroproduction of vector
mesons. The amplitude of this reaction in Born approxi-
mation reads

M(eA → e′V A) ∝∫
d4xd4y〈p2|jµ(x)|p1〉Dµν(x − y)〈V |Jµ(y)|0〉 , (1)

where
〈p2|jµ(x)|p1〉 = Ψ̄p2(x) γµ Ψp1(x) (2)

is the operator of lepton current; Jµ(y) is the hadronic
current operator; Dµν(x− y) is the Green function of the
photon. Using the Feynman gauge we have

Dµν(x − y) = −gµν

∫
d4Q

eiQ(x−y)

Q2 + io
, (3)

and

M(eA→e′V A)∝−
∫

d4Q

Q2 + io
jµ(Q; p1, p2)Jµ(Q; pV ) .

(4)
Here the Fourier transform of the currents reads:

jµ(Q; p1, p2) =
∫

d4x〈p2|jµ(x)|p1〉eiQx ; (5)

Jµ(Q; pV ) =
∫

d4y〈pV |Jµ(y)|0〉e−iQy ; (6)

p1,2 are the initial and final lepton momenta; PV is the
momentum of the produced V .

If the initial and final wave functions of the lepton are
undistorted plane waves,

Ψp1,p2(x) = eip1,2x u(p1,2) , (7)

then

jµ(Q; p1, p2) = (2π)4 δ(p1 − p2 − Q) ū(p2)γµu(p1) , (8)

and

M(eA→e′V A) ∝ 1
(p1−p2)2

ū(p2)γµu(p1)Jµ(p2−p1; pV ) .

(9)
However, in the presence of a Coulomb field, one must

rely on the solution of the Dirac equation, rather than on
the plane waves,

i
∂

∂ t
Ψ(�r, t) =

[
−i �α · �∇ + β m + e φ(r)

]
Ψ(�r, t) . (10)

Here �α and β are the standard Dirac matrixes; φ(r) is
the Coulomb potential which is independent of energy in
the rest frame of the nucleus; m is the lepton mass. The
initial state leptonic wave function which is a solution of
this equation, has the form of the sum of a plane and a
spherical outgoing wave, Ψ+(�p1, �r ) at �r → ∞, while the
final state wave function should contain a plane and an
incoming wave, Ψ−(�p2, �r ).

In the general case, eq. (10) can be solved only numer-
ically, but if the effects of nuclear size can be neglected,
i.e.

φ(r) = −Ze

r
, (11)

an approximate analytical solution exists, as it was found
by W.H. Furry [8],

Ψ+(�p1, �r ) =
C√
2ε1

ei�p1·�r
(

1 − i�α · �∇
2ε1

)

×F [iZα, 1; i(p1r − �p1 · �r )] u(�p1) , (12)

Ψ−(�p2, �r ) =
C∗
√

2ε2
ei�p2·�r

(
1 − i�α · �∇

2ε2

)

×F [−iZα, 1;−i(p2r + �p2 · �r )] u(�p2) , (13)
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where

C = eπZα/2 Γ (1 − iZα) ,

ε1,2 =
√

�p 2
1,2 + m2 , (14)

u(�p1,2) are the 4-spinors of the leptons, Γ (x) is the
gamma-function, and F (a, b; c) is the confluent hyperge-
ometric function. The condition that the leptons are ul-
trarelativistic, ε1,2 � m, implies that the essential orbital
momenta are large, l � 1. It is well satisfied in all cases
we are interested in.

For the sake of simplicity, we will work with “spinless
leptons” since we are interested only in an estimate of the
effects and do not expect a principal modification related
to the lepton spin. Then, the lepton wave functions satisfy
the Klein-Gordon equation

−∆Ψ(r) =
{

[ε − e φ(r)]2 − m2
}

Ψ(r) =[
p2 − 2 e ε φ(r) + e2 φ2(r)

]
Ψ(r) . (15)

Apparently, at high energies the term e2 φ2(r) can be ne-
glected, and for the Coulomb potential, eq. (11), one can
get the exact solution

Ψ+(�p1, �r ) = CF [iZα, 1; i(p1r − �p1 · �r )] ei�p1·�r , (16)

Ψ−(�p2, �r ) = C∗F [−iZα, 1;−i(p2r + �p2 · �r )] ei�p2·�r . (17)

Correspondingly, for the lepton current, jµ(x) = jµ(�r, t),

jµ(�r, t) = ei(ε1−ε2)t jµ(�r ) , (18)

where

j0(�r ) = eΨ−∗
(�p2, �r )

(
ε1 + ε2 +

2Zα

r

)
Ψ+(�p1, �r ) , (19)

�j(�r ) = ie
[
�∇Ψ−∗

(�p2, �r )Ψ+(�p1, �r )

− Ψ−∗
(�p2, �r ) �∇Ψ+(�p1, �r )

]
. (20)

This current is conserved

∂j0(�r, t)
∂t

= �∇ ·�j(�r, t) , (21)

or, in momentum representation

ν j0(Q) = �q ·�j(�q ) , (22)

where ν, �q are the energy and momentum transferred to
the target, ν2 − �q 2 = −Q2, and the Fourier transform of
the current reads:

jµ(Q) =
∫

d4xeiQxjµ(x) . (23)

In terms of time-independent current it reads:

j0(Q) = 2πδ(ε1 − ε2 − ν)
∫

d3rei�q·�r j0(�r ) ; (24)

�j(Q) = 2πδ(ε1 − ε2 − ν)
∫

d3rei�q·�r �j(�r ) . (25)

Using these expressions and conservation of the hadronic
current

ν J0(Q) = �q · �J(Q) , (26)

we arrive at the following form of the amplitude, eq. (4):

M = 2π

∫
d3q

−Q2 − io

[
�j(�q ) − j0(�q )

�q

ν

]
�J(Q) . (27)

The integral in eq. (27) contains hadronic current �J(Q)
with unknown dependence on Q (Q-dependence of the lep-
tonic current is fixed by eqs. (24),(25)). As the first simple
trial we assume that it is Q-independent, �J(Q) = �c. Then
the amplitude, eq. (27), takes the form

M = 2i (2π)2
�c · �d

ν
, (28)

where

�d =
1
2

∫
d3r

eiνr

r

[
i �∇ j0(�r ) + ν�j(�r )

]
. (29)

Let us consider kinematics when the virtual photon
takes a finite fraction y = ν/ε1 of the initial lepton energy,
and the scattering angle is small, θ 
 1. In this case, the
relative contribution of the the term Zα/r in the current,
eq. (19), estimated with the plane wave approximation, is
small, ln(1/θ) θ2/y 
 1. Thus, it is suppressed by a factor
xBj mN/ν. Neglecting this term, we simplify the current,
eq. (19), to

j0(r) = (ε1 + ε2)Ψ−∗
(�p2, �r )Ψ+(�p1, �r ) . (30)

Applying eqs. (16),(17) to eqs. (20),(30), we get for the
vector �d, eq. (29),

�d =
∫

d3r
eiνr+i�q·�r

r

[
(ε1�p2 − ε2�p1) F1(�r )F2(�r )

+ iε1F1(�r )�∇F2(�r ) + iε2�∇F1(�r )F2(�r )
]
, (31)

where

F1(�r, �p1) = CF [iZα, 1; i(p1r − �p1 · �r )] ,
F2(�r, �p2) = C∗F [−iZα, 1;−i(p2r + �p2 · �r )] . (32)

Then, we make use of the following relations:

�∇�rF1(�r, �p1) = −p1

r
�∇�p1F1(�r, �p1); (33)

�∇�rF2(�r, �p2) =
p2

r
�∇�p2F2(�r, �p2); (34)

1
r

=

∞∫
0

dλ e−λr ; (35)

and (see in [14])∫
d3r

r
F1(�r, �p1)F2(�r, �p2) exp(i�q · �r − λr + iνr) ≡

I(�q, �p1, �p2, λ) =
4πN

w

(w

z

)iZα

F (iZα, 1 − iZα; 1;x) , (36)
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where F (a, b; c; d) is the conventional hypergeometric
function:

x = 1 − uv

wz
;

w = �q 2 + (λ − iν)2 ;

u = (�p2 + �q )2 − (p2 + ν + iλ)2 ;

v = −(�p1 − �q )2 + (p1 + ν + iλ)2 ;

z = (p1 + p2 + ν + iλ)2 − (�p1 − �p2 − �q )2 ;

N =
∣∣∣Γ (1 − iZα)

∣∣∣2 =
πZα

sinh(πZα)
. (37)

With eqs. (33),(37) we arrive at a new expression for �d in
eq. (31),

�d = (ε1�p2 − ε2�p1)

×I(�q, �p1, �p2, λ=0)
∣∣∣
�q=�p1−�p2

−
∞∫
0

dλ�g(�p1, �p2, λ) , (38)

where

�g(�p1, �p2, λ)= i(p2ε1 �∇�p2−p1ε2 �∇�p1) I(�q, �p1, �p2, λ)
∣∣∣
�q=�p1−�p2

(39)
Further calculations are moved to Appendix A where

they are performed for a photon of mass mγ . In the final
eq. (A.26) the second term in the brackets vanishes since
F (1 + iZα, 1 − iZα; 2; x̃0) diverges logarithmically, but
1 − x̃0 ∝ m2

γ → 0. The first term at mγ → 0 gets

F (iZα,−iZα; 1; x̃0)mγ→0 −→ 1
|Γ (1 − iZα)|2 =

1
N

. (40)

Then eq. (A.26) leads in the limit mγ → 0 to

�d =
4π

Q2
(ε1 �p2 − ε2�p1)

[
Q2

(p1 + p2 + ν)2

]iZα

. (41)

Thus, we have proven that the amplitude is different from
the Born one only by the phase factor.

3 Coherent electroproduction of vector
mesons

3.1 VDM, a point-like nucleus

Apparently, the hadronic current depends on Q2. For in-
stance, the VDM suggests

�J(Q) = �J(0)
m2

V

Q2 + m2
V

, (42)

where mV is the vector meson mass. Including the prop-
agator of the virtual photon 1/Q2 it can be represented
as

m2
V

Q2 (Q2 + m2
V )

=
1

Q2
− 1

Q2 + m2
V

. (43)

Correspondingly, the new vector �d is equal to the differ-
ence between eq. (38) and the same expression, but with
replacement ν ⇒ √

ν2 − m2
V . As a result, on top of the

phase factor the amplitude acquires another complex form
factor,

S(Q2) = 1 − πZα

sinh(πZα)
x1−iZα W (κ) , (44)

where

W (κ) = F (iZα,−iZα; 1;κ)
−iZα(1 − κ)F (1 + iZα, 1 − iZα; 2;κ) , (45)

κ =
Q2

Q2 + m2
V

.

We calculated the ratio of the cross-sections of reaction
lA → l′V A calculated with the distorted Coulomb wave
functions and in the Born approximation. The results are
plotted in fig. 2 as functions of Zα for different values of
Q2/m2

V . Deviation from unity increases with Q2, and is
of course larger for heavier nuclei. Note that in the limit
Zα → 0 the form factor, eq. (44), recovers the conven-
tional VDM form, eq. (42), and the deviation from the
Born approximation vanishes, as fig. 2 confirms.

If the hadronic current contains a higher power of Q2

J(Q) = J(0)
(

m2
V

m2
V + Q2

)n

, (46)

it can be treated in a similar way, provided that n is in-
teger. In this case, the previously obtained expressions
should be differentiated in the parameter m2

V .

3.2 More realistic hadronic current

We assumed above for the sake of possibility of analyti-
cal calculations that the hadron current �J(Q) is indepen-
dent of other variables, but Q. This means, in particular,
that the amplitude of virtual coherent photoproduction
γ∗a → V A is isotropic, i.e. independent of the momen-
tum transfer �∆ = �Q−�pV . This is quite an unrealistic sug-
gestion, and a better form of the hadronic current would
be

�J(Q, �∆) =
�eV m2

V

m2
V + Q2

1

1 + B �∆2/2
, (47)

where �eV is the polarization vector of the vector meson,
and B is the slope of the transverse momentum distribu-
tion for the reaction γ∗A → V A.

In this case all multiple integrations in the amplitude
of electroproduction of vector meson can be done analyt-
ically down to the one dimensional integral,

M(lA → l′V A) =

1∫
0

dx�eV · �h(�p1, �p2, �pV , x) , (48)
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where �h = �h1 − �h2, and

�h1,2(�p1, �p2, �pV , x) =

1
2ω1,2

{[
ε2 p1

�∇p1 − ε1 p2
�∇p2 + (ε1�p2 − ε2�p1)

∂

∂ ω1,2

]

×J(�p1, �p2, �q, ω1,2)

}
�q=�p1−�p2−x�pV

. (49)

Here

x = 1 − uv

wz
;

w = �q 2 − ω2 ;
u = (�p2 + �q )2 − (p2 + ω)2 ;
v = (p1 + ω)2 + (�p1 − �q )2 ;
z = (p1 + p2 + ω)2 − (�p1 − �p2 − �q 2 ;

ω1 = (1 − x) ν2 − x(1 − x) p2
V − xB/2 ;

ω2 = (1 − x)(ν2 − m2
V ) − x(1 − x) p2

V − xB/2 ; (50)

and

J(�p1, �p2, �q, ω1,2) =
∫

d3r

r
eiωr+i�q·�rF (iZα, 1, ip1r − i�p1 · �r )

×F (iZα, 1, ip2r + i�p2 · �r ) =
4πN

w

(w

z

)iZα

F (iZα, 1−iZα; 1;x). (51)

We performed numerical calculations for forward pro-
duction ( �∆ = 0) of transversely polarized vector mesons.
The ratio of the calculated and Born cross-sections
σ/σBorn = |M |2/|MBorn|2 is depicted in fig. 3 for few val-
ues of ε1 at fixed y = (ε1 − ε2)/ε1 = 0.6 and Q2 = m2

ρ.
The magnitude of the effect is probably overestimated

since the nucleus size is taken into account only in the
production amplitude γ∗A → V A, while the wave func-
tions of the incident and scattered leptons still correspond
to the potential of a point-like center (see next sect. 3.3).
Nevertheless, these calculations reveal a new effect, the
Coulomb corrections can be either positive, like in the
previous case, or negative (compare with the results of
calculations in [15]).

We have also studied how these Coulomb corrections
vary as functions of y and Q2. While the magnitude of de-
viation from the Born cross-section is nearly independent
of y, it substantially increases with Q2, keeping about the
same shape of the dependence on Zα.

3.3 Effects of nuclear size on the lepton wave
functions

One should expect the Coulomb effects to be diminished
when the size of the nucleus is taken into account. Indeed,
the V -meson interaction radius is short and the beam
lepton has to have about the same impact parameter as
the virtual photon or V -meson (the difference is ∼ 1/Q).
Propagating through the nucleus, the lepton experiences

a weaker electric field compared to the case of a point-
like Coulomb center. Correspondingly, the Coulomb wave
functions of the leptons must be corrected for the finite
size of the nucleus.

The general case of a massless lepton in an isotropic
potential V (r) has been solved and the radial wave func-
tions, correct in all orders in Zα, have been found in [16]
within the quasiclassical WKB approximation. They have
been used later in [17–19] to sum up the partial waves and
build a formal expression for the lepton wave functions

Ψ±(�p, �r ) = e±iδ1/2 η(r) e±ib( �J 2−3/4) ei�p·�r η(r) u(p) , (52)

where �J = �L + �σ/2 is the operator of the total angular
momentum

b = − 1
2 p2

∞∫
0

dr
1
r

dV (r)
dr

,

δ1/2 = −Zα ln(pRA) −
RA∫
0

dr V (r) + b ,

η(r) =
1
ρ r

r∫
0

dr′
[
p − V (r)

]
, (53)

and u(p) is the 4-spinor of the lepton. Equation (52) is a
generalization of the Furry’s wave functions, eq. (13).

Apparently, such an expression with the operator �J in
the exponent is not easy to use for practical applications.
This is why only the first two terms of the order of (Zα)0
and (Zα)1 in the expansion of the exponential in (52) have
been considered in [17–19]. We skip here those lengthy ex-
pressions, but apply the procedure developed in [17,18] to
our case. We assume a homogeneous charge distribution
inside a sphere of nuclear radius RA and use the approx-
imation ε1,2RA � 1 and θ12 
 1, where θ12 is the lepton
scattering angle. Then the ratio of the amplitude modified
by the Coulomb field to the Born one takes the form

M(lA → l′V A)
MBorn(lA → l′V A)

= 1 + i
3B Zα

R2
A

= 1 + i
3Zα

5
. (54)

Here B is the slope parameter of the differential cross-
section introduced in (47). It is related to the mean charge
nuclear radius squared:

B =
1
3
〈r2

ch〉A =
1
5

R2
A . (55)

Thus, deviation from the Born cross-section,

σ(lA → l′V A)
σBorn(lA → l′V A)

= 1 +
9
25

(Zα)2 . (56)

This is a sizeable correction for heavy nuclei, for example,
the modified cross-section on lead is 13% higher than the
Born one.

Surprisingly, the correction, eq. (56), does not expose
any dependence on reaction kinematics, contrary to the
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results of the previous sections. It is probably a conse-
quence of the higher-order terms in Zα missed in this
calculations. How to elaborate on those terms is still a
challenge which we leave for further studies. The purpose
of the present estimates is to see whether the finiteness of
nuclear size can substantially diminish the effect of long-
range Coulomb forces. Apparently not, the deviation is
still sizeable. One should calculate at least the next term
O(Z2α2) to make it sure that the correction, eq. (54), is
not just a phase. We believe that such a possibility is very
improbable, it happened so far only in the case of elas-
tic scattering, and in the special artificial case when the
hadronic current is a constant (sect. 2). In both cases, the
Furry wave functions for a point-like Coulomb center are
used. The example of sect. 3.1 demonstrates that even the
simplest Q2-dependence of the hadronic current leads to
an amplitude which consists of few terms having different
phases, and the cross-section changes.

4 Eikonal approximation

A different approach to the problem of distortion of the
lepton wave functions in the Coulomb field of an extended
nucleus is the eikonal approximation of Bjorken, Kogut
and Soper (BKS) [20]. It is not clear how precise this ap-
proximation is, the best way to figure it out is to com-
pare its results with the known exact solution in the case
when it is available. The exact cross-section has been cal-
culated by Davies, Bethe and Maximon (DBM) [21] for
photoproduction of e+e− pairs and Bethe and Maximon
for bremsstrahlung [10]. Using the BKS approach, we cal-
culate in Appendix B the cross-section for this reaction
and arrive at exactly the same Coulomb correction to the
Born cross-section, as it has been found in [21,10]. This
success can serve as an argument that the eikonal approx-
imation is rather accurate.

In the eikonal approximation the wave functions of
spinless leptons read:

Ψ+(�p1, �r ) = exp
[
i �p1 · �r − i χ1(�r )

]
;

Ψ−(�p2, �r ) = exp
[
i �p2 · �r + i χ2(�r )

]
. (57)

Here the phase shifts are

χ1(�r ) =

z∫
−∞

dz′ V (�b, z′) ,

χ2(�r ) =

∞∫
z

dz′ V (�b, z′) . (58)

At high energies, ε1,2 �
√

Q2, the vectors �p1, �p2 and
�p1 − �p2 are nearly parallel. We chose the axis z along �p1,
correspondingly the vector �r = (�b, z) has projection �b to
the normal plane.

For the long-range Coulomb field, V (r)r→∞ = ±Zα/r,
the integrals in (58) are strictly speaking divergent. To fix

the problem we introduce an infra-red cut-off

V (r)
∣∣∣
r→∞

= ± Zα

r
e−λr

(
1 − e−µr

)
, (59)

where the last factor corresponds to the pole form of the
nuclear form factor with

µ−2 =
〈r2

ch〉A
6

. (60)

One may interpret λ in (59) as an effective photon
mass, or (better justified) as the inverse screening radius
of the nuclear Coulomb field by the atomic electrons. As
soon as 1/λ � RA, any variation of the value of λ may lead
only to r-independent additive corrections to the phase
shifts χ1,2(�r ) which does not affect the value of the cross-
section we are interested in.

Utilizing the same realistic form of the hadronic cur-
rent for electroproduction of vector mesons as in sect. 3.2,
we get the following expression for the amplitude:

M(lA → l′V A) =

1∫
0

dx�eV · �f(�p1, �p2, �pV , x) , (61)

where

�f = �f1 − �f2 ,

and

�f1,2(�p1, �p2, �pV , x) =
1

2ω1,2

∂

∂ω1.2

×
∫

d3r

r

{[
ε1�p2 − ε2�p1

]
−

[
ε1�∇χ2(�r ) + ε2�∇χ1(�r )

]}
× exp

[
i�κ�r − iχ1(�r ) − iχ2(�r ) + i ω1,2 r

]
, (62)

where �κ = �p1 − �p2 − x �pV .
Note that the x-dependence of this expression comes

via ω1,2 defined in (50). The derivatives �∇χ1,2(r) in (62)
are the momenta transferred by the Coulomb field to the
initial and final leptons. In the case of an extended nucleus
they are of the order of Zα/RA.

Using the relation∣∣∣ε1�p2 − ε2�p1

∣∣∣ =
√

ε1ε2 Q2 , (63)

we see that for Q2 � R−2
A , the second term in curly brack-

ets in (62) is much smaller than the first one and can be
neglected. Then eq. (58) takes the form

χ1(�r ) + χ2(�r ) =

∞∫
−∞

dz V (�b, z) = χ(�b) =

±2Zα
{

K0(λb) − K0[(µ + λ)b]
}

, (64)

where plus and minus correspond to different signs of the
potential, eq. (59). Since the sum χ1(�r ) + χ2(�r ) is inde-
pendent of z, one can explicitly perform integration over
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z in eq. (62), using the following relation:

∞∫
−∞

dz

r
exp(i κLz + iωr) = 2K0

(
b
√

κ2
L − ω2

)
, (65)

where K0(x) is the modified Bessel function, ω = ω1,2,
and κL,T are the longitudinal and transverse components
of �κ.

Thus, the problem of the calculation of the amplitude
(61) is reduced to integrals of the form

1∫
0

dx

∞∫
0

db bK0

(
b
√

κ2
L − ω2

)
eiχ(b) J0(κTb) , (66)

which we calculate numerically. Our results for ratio of the
calculated and Born cross-sections are depicted in fig. 4 as
functions of Zα.

It turns out that the cross-section is smaller than
the Born one, and the difference is Q2-independent at
Q2 > 1 GeV2. However, the range of Q2 correlates with
the photon energy ν to satisfy the condition of coherence
qL = (Q2 + m2

V )/2ν ∼< 1/RA.

5 Conclusions and outlook

The Born approximation employed in all analyses of ex-
perimental data has no justification for heavy nuclei with
Zα ∼ 1. Therefore, the accuracy of experimental results
for nuclear effects in DIS may be essentially affected by
this theoretical uncertainty.

Radiative corrections are known to provide a substan-
tial contribution to the DIS cross-section. Usually they
can be calculated rather accurately [22], except one re-
lated to the modification of the lepton wave function by
long-range Coulomb forces. This correction violating the
Born approximation is usually ignored, and for a good
reason: it is a very difficult task to calculate it. Neverthe-
less this problem should be challenged rather than “swept
under the carpet”.

A certain progress is made in the present paper
towards the calculation of the DIS cross-section using
the lepton wave functions modified by the long-range
Coulomb forces. We start with the simplest assumption
that the hadronic current is independent of Q2 and prove
that the DIS amplitude acquires only a phase. In this case
the Coulomb corrections do not modify the Born cross-
section.

This conclusions, however, changes after a Q2-
dependence is introduced into the hadronic current. We
demonstrate that on the example of coherent leptopro-
duction of vector mesons off a point-like nucleus which we
treat within VDM. Of course, VDM should not be used at
high Q2 where color transparency is important. However,
we just want to estimate the scale of the correction, while
precise calculations ready to use in an analysis of data are
still a challenge.

Further steps beyond the approximation of a point-like
target lead to a conclusion that, in the case of an extended
nucleus, the Coulomb corrections are still important and
can affect the existing experimental results for nuclear ef-
fects in DIS which are based on the Born approximation.
To do more precise calculations one needs to know the lep-
ton wave functions in the Coulomb field of an extended
nucleus which are currently available only in the first order
in Zα.

We also use the eikonal approximation which is better
designed for the case of extended nuclei. First, we demon-
strate (Appendix B) that this approximation well repro-
duces the known exact results when they are available.
Then we apply this method to the process of coherent
electroproduction of vector mesons and again arrive at a
sizeable correction to the Born cross-section.

We conclude that the long-range Coulomb forces may
significantly modify the DIS cross-section on heavy nuclei
compared to the widely used Born approximation. Further
progress in this direction should help to make experimen-
tal results for nuclear effects in DIS more reliable.

Although originally our work has been motivated by
the unusual nuclear effects in DIS, observed in the HER-
MES experiment [12] (see Introduction), we did not find
anything special about the energy and x range of this
data. Whatever deviations from the Born approximation
happen due to the long-range Coulomb forces, they should
have similar magnitude either at the energy of HERMES,
or NMC experiments.

We are grateful to Andreas Schäfer who initiated this work
for interesting and valuable discussions. This work has been
partially supported by a grant from the Gesellschaft für Schw-
erionenforschung Darmstadt (GSI), grant No. GSI-OR-SCH,
and by the European Network: Hadronic Physics with Elec-
tromagnetic Probes, Contract No. FMRX-CT96-0008.

Appendix A. Calculation of the vector �d

We present here the details of calculations of the vector
�d in eq. (38). Since we are going to use the results also
in sect. 3.1, where the amplitude contains two terms in
eq. (43), we will treat the photon as a massive particle
with mass mγ which is either zero (the first term in (43)),
or equal to mV (the first term in (43)). Correspondingly,
in all equations of sect. 2 one should replace ν ⇒ ν̃ =√

ν2 − m2
γ .

The expression for the vector g(�p1, �p2, λ) in eq. (39)
can be represented as

�g(�p1, �p2, λ) =[(
p2ε1 �∇ · �p2 − p1ε2 �∇ · �p1

)
I(�q, �p1, �p2, λ)

]
�q=�p1−�p2

+
4πiN

Q2 + m2
γ + λ2 − 2iν̃

[
Q2 + m2

γ + λ22 − 2iν̃

(p1 + p2 + ν̃ + iλ)2

]iZα
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×
{

− 2iZα(ε1�p2 − ε2�p1)
p1 + p2 + ν̃ + iλ

Φ(x̃) − 2
(

ε1
D1

− ε2
D2

)

×(p1�p2 − p2�p1)(1 − x̃)Φ′(x̃)

}
. (A.1)

The following notations are used here:

Φ(x̃) = F (iZα, 1 − iZα; 1; x̃) ; (A.2)

Φ′(x̃) =
d
dx̃

Φ(x̃) ; (A.3)

x̃ = x�q=�p1−�p2 =
Q2 − ∆2

Q2 + m2
γ + λ2 − 2iν̃λ

; (A.4)

Q2 = �q 2 − ν2 ;
∆2 = (p1 − p2)2 − ν2 ; (A.5)
D1 = u�q=�p1−�p2 = p2

1 − (p2 + ν̃ + iλ)2 ;

D2 = v�q=�p1−�p2 = (p1 + ν̃ + iλ)2 − p2
2 . (A.6)

Disregarding the difference between p1,2 and ε1,2

(equivalent to dropping off the corrections of the order
of m2

γ/p2
1,2), we can write

2ε1
D1

− 2ε2
D2

=
2(ν̃ + iλ)

(p1 − p2)2 + (λ − iν̃)2
− 2

p1 + p2 + ν + iλ
.

(A.7)
Making use of this relation, we get

�g(λ) =
4πN (ε1�p1 − ε2�p1)

Q2 + m2
γ + λ2 − 2iν̃λ

[
Q2 + m2

γ + λ2 − 2iν̃λ

(p1 + p2 + ν̃ + iλ)2

]iZα

×
[

2(λ − iν̃)
(p1 − p2)2 + (λ − iν̃)2

(1 − x̃)Φ′(x̃)

+
2Zα Φ(x̃) + 2i(1 − x̃)Φ′(x̃)

p1 + p2 + ν̃ + iλ

]
. (A.8)

Notice that

2(λ − iν̃)(1 − x̃)
(�p1 − �p2)2 + (λ + iν̃)2

=

2(λ − iν)
Q2 + m2

γ + λ2 − 2iνλ
= − 1

x̃

∂x̃

∂λ
, (A.9)

and

2Zα Φ(x̃) + 2i(1 − x̃)Φ′(x̃) = i(Zα)2 Φ̃(x̃) , (A.10)

where

Φ̃(x̃) = F (1 + iZα, 1 − iZα; 2; x̃) . (A.11)

Therefore, the vector �g(λ) gets the form

�g(λ) =
4πN(ε1�p2 − ε2�p1)

Q2

[
Q2 + m2

γ + λ2 − 2iν̃λ

(p1 + p2 + ν̃ + iλ)2

]iZα

×
[
− ∂Φ

∂λ
+

i(Zα)2 x̃ Φ̃(x̃)
p1 + p2 + iλ + ν̃

]
. (A.12)

Here, the second term in the brackets of the last factor is
small, ∼ θ2 ln(1/θ), relative to the first term (see below),
therefore, it can be neglected for the small scattering an-
gles θ 
 1. In this case, the problem under consideration
is reduced to the integral

∞∫
0

dλ�g(λ) =
4πN

Q2
(ε1�p2 − ε2�p1)L (A.13)

where

L =

∞∫
0

dλ tiZα ∂Φ

∂λ
, (A.14)

and

t =
Q2 + m2

γ + λ2 − 2iνλ

p1 + p2 + ν̃ + iλ
. (A.15)

Integrating in eq. (A.14) by parts, we get

L = tiZα Φ(x̃)
∣∣∣λ=∞

λ=0
−

∞∫
0

dλ
∂ tiZα

∂ λ
Φ(x̃) . (A.16)

Since x̃ = 0 at λ → ∞ and Φ(0) = 1, we have

tiZα Φ(x̃)
∣∣∣λ=∞

λ=0
= (−1)iZα − tiZα

0 Φ(x̃0) , (A.17)

where

t0 = t(λ = 0) =
Q2 + m2

γ

(p1 + p2 + ν̃)2
;

x̃0 = x̃(λ = 0) =
Q2

Q2 + m2
γ

. (A.18)

To calculate the rest integrals we notice that the value
of x̃ is tiny, except for the region of λ < (Q2+m2

γ)/(2ν̃) 

1. Then, we split the integral in eq. (A.16) into two parts,

∞∫
0

dλ =

λ1∫
0

dλ +

∞∫
λ1

dλ , (A.19)

where we chose (Q2+m2
γ)/(2ν̃) 
 λ1 
 ν, so that |x̃| 
 1

in the second term in (A.19). Therefore, we can fix Φ(x̃) =
1 in the second integral in (A.19) and get

∞∫
λ1

dλ
∂ tiZα

∂ λ
Φ(x̃) ≈

tiZα
∣∣∣∞
λ1

+ O

(
λ1

ν

)
= (−1)iZα − tiZα

1 + O

(
λ1

ν

)
, (A.20)

where t1 = t(λ1).
In the first integral in (A.19) we can make use of the

smallness of λ in the expression (A.15) and rewrite it as

t =
Q2 + m2

γ − 2iλν̃

(p1 + p2 + ν̃)2
=

x̃0 t0
x̃

1
x

. (A.21)
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Then, the first integral in (A.19) takes the form

λ1∫
0

dλ
∂tiZα

∂λ
Φ(x̃) =

−iZα(x̃0t0)iZα

x̃1∫
x̃0

dx̃x̃−1−iZαΦ(x̃) =

(x̃0t0)iZα
[
x̃−iZαF (iZα, iZα; 1; x̃)

]∣∣∣∣∣
x̃1

x̃0

=

tiZα
1 − tiZα

0 F (iZα, iZα; 1; x̃0) + O

(
λ1

ν

)
. (A.22)

Here, we used the definition of Φ(x̃) from eq. (A.2).
Now, taking into account that |x̃(λ = λ1)| 
 1, we

eventually arrive at the following expression for the inte-
gral, eq. (A.14):

L = tiZα
0 [F (iZα, iZα; 1; x̃0) − F (iZα, 1 − iZα; 1; x̃0)] .

(A.23)
Taking into account the relation

F (iZα, iZα; 1; x̃0) = F (iZα,−iZα; 1; x̃0)
+ iZα x̃0 F (1 + iZα, 1 − iZα; 2; x̃0) , (A.24)

we can integrate �g(λ) as

∞∫
0

dλ g(λ) =
4iπ(ε1�p2 − ε2�p1)

Q2 + m2
γ

[
Q2 + m2

γ

(p1 + p2 + ν̃)2

]iZα

× iZα F (1 + iZα, 1 − iZα; 2; x̃0) . (A.25)

Substituting this expression into eq. (38), we eventually
arrive at the final expression for �d:

�d =
4π N

Q2 + m2
γ

(ε1�p2 − ε2�p1)

[
Q2 + m2

γ

(p1 + p2 + ν̃)2

]iZα

× [F (iZα,−iZα; 1; x̃0) − iZα(1 − x̃0)
× F (1 + iZα, 1 − iZα; 2; x̃0)] . (A.26)

Appendix B. Eikonal approximation vs. the
exact calculations

Here we calculate the total cross-section of photoproduc-
tion of electron-positron pairs off atoms at high energies
relying upon the eikonal approximation of ref. [20] and
compare with the exact results of [21].

According to [20] the photoproduction cross-section
has the factorized form

σ(γZ → e+e−Z) =

1∫
0

du

∫
d2ρσ(ρ, u)

∣∣∣Ψ(�ρ, u)
∣∣∣2, (B.1)

where σ(ρ, u) is the cross-section of interaction of the e+e−
dipole with the atom which depends on the transverse sep-
aration �ρ and the fraction u = (E + pL)/2ω of the photon
light cone momentum carried by the electron. Ψ(�ρ, u) is
the e+e− wave function of the photon∣∣∣Ψ(�ρ, u)

∣∣∣2 =
α m2

2π2

{
K2

0 (mρ)+
[
u2+(1−u)2

]
K2

1 (mρ)
}

,

(B.2)
where m is the electron mass, α is the fine structure con-
stant.

If the atom remains intact, then according to [20],

σ(ρ, u) =

2
∫

d2b
{

1−exp
[
iχ(�b − u�ρ)−iχ(�b+�ρ−u�ρ)

]}
, (B.3)

where χ(�b) is defined in (64).
Replacing in (B.3) �b + (1/2 − u)�ρ ⇒ �b we arrive at

σ(ρ, u) = 2
∫

d2b
{

1 − exp
[
iχ(�b+) − iχ(�b−)

]}
, (B.4)

where �b± = �b ± �ρ/2. Thus, we conclude that the dipole
cross-section, eq. (B.4), depends only on the transverse
separation ρ.

The phase shifts χ(�b±) can be expressed in terms of
the transverse density of electrons in the atom n(s),

χ(�b±) = 2Zα

∞∫
b±

ds s n(s) ln
(

s

b±

)
, (B.5)

where b± = |�b±| and the density is normalized as∫ ∞

0

ds s n(s) = 1 . (B.6)

The atomic size RZ ∼ 1/(mαZ1/3) is much larger than
the transverse e+e− separation ρ ∼ 1/m, therefore, one
can split the integral in (B.4) into two parts,

σ(ρ)=2

∞∫
0

db b

2π∫
0

dφ
[
1−exp(iχ+−iχ−)

]
=σ1(ρ)+σ2(ρ) ,

(B.7)
where φ is the azimuthal angle between �b and �ρ; χ± =
χ(�b±), and

σ1(ρ) = 2

b0∫
0

db b

2π∫
0

dφ
[
1 − exp(iχ+ − iχ−)

]
(B.8)

σ2(ρ) = 2

∞∫
b0

db b

2π∫
0

dφ
[
1 − exp(iχ+ − iχ−)

]
. (B.9)

We chose the value of b0 satisfying the condition

1
m


 b0 
 RZ . (B.10)
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Starting with eq. (B.9) for σ2(ρ) we note that the mean
value of the e+e− separation is much smaller than the
impact parameter

ρ ∼ 1
m


 b0 ≤ b .

Therefore,

χ+ − χ− = χ

(
�b +

�ρ

2

)
− χ

(
�b − �ρ

2

)
= �ρ · �∇b χ(�b)

+O

(
ρ3

b3

)
≈ ρ cos φ

dχ(b)
d b

=

2Zα cos φ
ρ

b

∞∫
b

ds s n(s) . (B.11)

Correspondingly,

σ2(ρ) = 4π

∞∫
b0

db b

[
1 − J0

(
ρ
dχ

d b

)]
= 4π(Zα)2ρ2

×
∞∫

b0

d b

b


 ∞∫

b

ds s n(s)




2

+ O

(
ρ4

R4
Z

)
. (B.12)

Integrating this expression by parts, we get

∞∫
b0

d b

b


 ∞∫

b

ds s n(s)




2

= ln

(
1
b0

)
 ∞∫

b0

ds s n(s)




2

−2

∞∫
b0

db b ln

(
1
b

)
n(b)

∞∫
b

ds s n(s) . (B.13)

The bottom limits b0 of the integrals in the right-hand
side (r.h.s.) of (B.13) can be replaced by zero, b0 ⇒ 0, with
an accuracy of the order of b2

0/R2
Z 
 1. Then, taking into

account the normalization condition, eq. (B.6), we get

σ2(ρ) = 4π(Zα)2 ρ2

[
ln

(
a

b0

)
+ O

(
b2
0

R2
Z

)]
, (B.14)

where

ln a = −2

∞∫
0

db b ln

(
1
b

)
n(b)

∞∫
b

ds s n(s) . (B.15)

Apparently, the value of a ∼ RZ depends only on the
details of the atomic structure contained in the electron
density distribution n(s).

Now we turn to the first term σ1(ρ) in (B.7). Since
b ≤ b0 
 RZ , also b± = |�b± �ρ/2| ≤ b0 
 RZ . Making use
of these relations, we get

χ± = 2Zα

∞∫
b±

ds s n(s) ln

(
s

b±

)
=

2Zα

∞∫
0

ds s n(s) ln

(
s

b±

)
+ O

(
b2
±

R2
Z

)
. (B.16)

Consequently,

χ+−χ−=2Zα ln

(
b−
b+

) ∞∫
0

ds s n(s)+O

(
b2
±

R2
Z

)
≈

Zα ln

[
(�b−�ρ/2)2

�b+�ρ/2)2

]
=Zα ln

(
b2−bρ cos φ+ρ2/4
b2+bρ cos φ+ρ2/4

)
. (B.17)

Substituting this expression in (B.9), we get σ1(ρ) in the
following form:

σ1(ρ) = 2

b0∫
0

db b

2π∫
0

dφ

[
1 −

(
b2 − bρ cos φ + ρ2/4
b2 + bρ cos φ + ρ2/4

)iZα
]

.

(B.18)
To proceed to the further modifications of this expres-

sion, we employ the relation

1 − XY = −XY F (1 − Y, 1; 2; 1 − X) , (B.19)

with

X =
b2 − bρ cos φ + ρ2/4
b2 + bρ cos φ + ρ2/4

,

Y = iZα . (B.20)

We also make use of the following representation for the
hypergeometric function:

F (1 − Y, 1; 2; 1 − X) =

1
Γ (1 − Y )Γ (1 + Y )

1∫
0

dt
t−Y (1 − t)Y

1 − t(1 − X)
. (B.21)

Applying these relations to (B.18), we get

σ1(ρ) = − 2
Γ (1 − iZα)Γ (1 + iZα)

×
1∫

0

dt t−iZα(1 − t)iZαL(b0, ρ, t) , (B.22)

where

L(b0, ρ, t) =
b0∫

0

db b

2π∫
0

dφ
2 b ρ cos φ

b2 + (1 − 2t)bρ cos φ + ρ2/4
=

2πρ2(1 − 2t)

{
b2
0

b2 + ρ2/4 +
√

D

−1
2

ln

[
b2 + [1 − 2(1 − 2t)2]ρ2/4 +

√
D

2ρ2 t(1 − t)

]}
, (B.23)
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and

D =
(

b2 +
ρ2

4

)2

− b2ρ2(1 − 2t)2 . (B.24)

According to the above convention ρ 
 b0 and this
expression can be further simplified,

L(b0, ρ, t)=πρ2(1−2t)

{
1−ln

[
b2
0

ρ2t(1−t)

]
+O

(
ρ2

b2
0

)}
.

(B.25)
Now integration in (B.22) can be performed analyti-

cally, and we arrive at the final expression for σ1

σ1(ρ)=4π(Zα)2ρ2

[
ln

(
b0

ρ

)
−2−ReΨ(1+iZα)−C

]
,

(B.26)
where

Ψ(w) =
d

dw
ln Γ (w) ; (B.27)

C = −Ψ(1) = 0.5772 .

Adding eqs. (B.14) and (B.27), we eventually get the
dipole cross-section (B.12) in the form

σ(ρ) = σBorn(ρ) − ∆σ(ρ) . (B.28)

Here

σBorn(ρ) = 4π(Zα)2ρ2

[
ln

(
a

ρ

)
− 2

]
; (B.29)

∆σ(ρ) = 4π(Zα)2ρ2
[
Re Ψ(1 + iZα) + C

]
=

4π(Zα)2ρ2 f(Zα) , (B.30)

and

f(Zα) = (Zα)2
∞∑

k=1

1
k[k2 + (Zα)2]

. (B.31)

Now we are in the position to calculate the photopro-
duction cross-section substituting eq. (B.28) into (1),

σ(γZ → e+e−Z) = σBorn(γZ → e+e−Z)
−∆σ(γZ → e+e−Z) , (B.32)

where

σBorn(γZ → e+e−Z) =
28Z2α3

9m2

×
[
ln(2am) − C − 83

42

]
; (B.33)

∆σ(γZ → e+e−Z) =
28Z2α3

9m2
f(Zα) . (B.34)

Note that the Coulomb correction ∆σ(γZ → e+e−Z)
in eq. (B.34) coincides with the one calculated in [21] using
a very different technique. At the same time, the Born
terms are different, as one should have expected. Indeed,
the Bethe-Maximon theory describes photoproduction of
e+e− pairs off a point-like nonscreened nucleus, while we
are dealing with pair production off atoms. Equivalence
of the Coulomb corrections calculated within the eikonal
approximation and in the Bethe-Maximon theory in the
case of photon bremsstrahlung can be proven exactly in
the same way, since both processes are controlled by the
same dipole cross-section.
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